{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Domácí úkol 6 (30. 10. 2023)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Příklad 1\n", "\n", "Mějme grupoid $(M,\\circ)$, kde $M=\\lbrace \\textrm{Kámen}, \\textrm{Nůžky}, \\textrm{Papír}, \\textrm{Tapír}, \\textrm{Spock}\\rbrace$ a nechť $\\circ$ je binární operace, která libolvolným dvěma prvkům z množiny $M$ přiřadí takový prvek, který vyhrává dle pravidel hry *Kámen, nůžky, papír, tapír, Spock* (viz níže). Najděte všechny podgrupoidy grupoidu $(M,\\circ)$.\n", "\n", "Pravidla hry *Kámen, nůžky, papír, tapír, Spock*:\n", "* Nůžky stříhají papír\n", "* Papír balí kámen\n", "* Kámen rozdrtí tapíra\n", "* Tapír otráví Spocka\n", "* Spock zničí nůžky\n", "* Nůžky utnou hlavu tapírovi\n", "* Tapír sní papír\n", "* Papír usvědčí Spocka\n", "* Spock vypaří kámen\n", "* Kámen tupí nůžky" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Příklad 2\n", "\n", "Ukažte, že množina $G=\\lbrace a+i\\cdot b | a, b\\in \\mathbb{Z}\\rbrace$ je podgrupoid grupy $(\\mathbb{C},+)$.\n", "\n", "Dále nalezněte podgrupu $H$ takovou, aby platilo $G \\subset H \\subset \\mathbb{C}$." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" } }, "nbformat": 4, "nbformat_minor": 4 }